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Apple designed the iOS platform with security at its core. When we set out to create 
the best possible mobile OS, we drew from decades of experience to build an entirely 
new architecture. We thought about the security hazards of the desktop environment, 
and established a new approach to security in the design of iOS. We developed and 
incorporated innovative features that tighten mobile security and protect the entire 
system by default. As a result, iOS is a major leap forward in OS security.

Every iOS device combines software, hardware, and services designed to work together 
for maximum security and a transparent user experience. iOS protects not only the 
device and its data at rest, but the entire ecosystem, including everything users do 
locally, on networks, and with key Internet services. 

iOS and iOS devices provide stringent security features, and they’re easy to use. Many 
of these features are enabled by default, so IT departments don’t need to perform 
extensive configurations. And key security features like device encryption are not 
configurable, so users can’t disable them by mistake. Other features, such as Touch ID, 
enhance the user experience by making it simpler and more intuitive to secure the 
device.

This document provides details about how security technology and features are  
implemented within the iOS platform. It will also help organizations combine iOS  
platform security technology and features with their own policies and procedures  
to meet their specific security needs.

• System security: The integrated and secure software and hardware that are the  
platform for iPhone, iPad, and iPod touch.

• Encryption and data protection: The architecture and design that protect user data 
if the device is lost or stolen, or if an unauthorized person attempts to use or modify it.

• App security: The systems that enable apps to run securely and without compromis-
ing platform integrity.

• Network security: Industry-standard networking protocols that provide secure 
authentication and encryption of data in transmission. 

• Internet services: Apple’s network-based infrastructure for messaging, syncing, and 
backup.

• Device controls: Methods that prevent unauthorized use of the device and enable  
it to be remotely wiped if lost or stolen. 

Introduction
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Security architecture diagram of iOS provides 
a visual overview of the different technologies 
discussed in this document.
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System security is designed so that both software and hardware are secure across 
all core components of every iOS device. This includes the boot-up process, software 
updates, and secure enclave. This architecture is central to security in iOS, and never 
gets in the way of device usability. 

The tight integration of hardware and software on iOS devices ensures that each 
component of the system is trusted, and validates the system as a whole. From initial 
boot-up to iOS software updates to third-party apps, each step is analyzed and vetted 
to help ensure that the hardware and software are performing optimally together and 
using resources properly.

Secure Boot Chain
Each step of the startup process contains components that are cryptographically signed 
by Apple to ensure integrity and that proceed only after verifying the chain of trust. 
This includes the bootloaders, kernel, kernel extensions, and baseband firmware.

When an iOS device is turned on, its application processor immediately executes code 
from read-only memory known as the Boot ROM. This immutable code is laid down 
during chip fabrication, and is implicitly trusted. The Boot ROM code contains the 
Apple Root CA public key, which is used to verify that the Low-Level Bootloader (LLB) 
is signed by Apple before allowing it to load. This is the first step in the chain of trust 
where each step ensures that the next is signed by Apple. When the LLB finishes its 
tasks, it verifies and runs the next-stage bootloader, iBoot, which in turn verifies and 
runs the iOS kernel. 

This secure boot chain helps ensure that the lowest levels of software are not tampered 
with and allows iOS to run only on validated Apple devices.

For devices with cellular access, the baseband subsystem also utilizes its own similar 
process of secure booting with signed software and keys verified with the broadband 
subsystem.

For devices with an A7 processor, the Secure Enclave coprocessor also utilizes a secure 
boot process that ensures its separate software is verified and signed by Apple.

If one step of this boot process is unable to load or verify the next process, startup is 
stopped and the device displays the “Connect to iTunes” screen. This is called recovery 
mode. If the Boot ROM is not even able to load or verify LLB, it enters DFU (Device 
Firmware Upgrade) mode. In both cases, the device must be connected to iTunes via 
USB and restored to factory default settings. For more information on manually enter-
ing recovery mode, see http://support.apple.com/kb/HT1808.

Entering Device Firmware Upgrade  
(DFU) mode 
Restoring a device after it enters DFU mode 
returns it to a known good state with the 
certainty that only unmodified Apple-signed 
code is present. DFU mode can be entered 
manually: First connect the device to a  
computer using a USB cable, then hold down 
both the Home and Sleep/Wake buttons. After 
8 seconds, release the Sleep/Wake button 
while continuing to hold down the Home 
button. Note: Nothing will be displayed on  
the screen when it’s in DFU mode. If the 
Apple logo appears, the Sleep/Wake button 
was held down too long.

System Security
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System Software Authorization
Apple regularly releases software updates to address emerging security concerns  
and also provide new features; these updates are typically provided for all supported 
devices simultaneously. Users receive iOS update notifications on the device and 
through iTunes, and updates are delivered wirelessly, encouraging rapid adoption  
of the latest security fixes.

The startup process described above helps ensure that only Apple-signed code  
can be installed on a device. To prevent devices from being downgraded to older  
versions that lack the latest security updates, iOS uses a process called System Software 
Authorization. If downgrades were possible, an attacker who gains possession of a 
device could install an older version of iOS and exploit a vulnerability that’s been fixed 
in the newer version. 

On a device with an A7 processor, the Secure Enclave coprocessor also utilizes System 
Software Authorization to ensure the integrity of its software and prevent downgrade 
installations. See “Secure Enclave,” below.

iOS software updates can be installed using iTunes or over the air (OTA) on the device. 
With iTunes, a full copy of iOS is downloaded and installed. OTA software updates 
download only the components required to complete an update, improving network 
efficiency rather than downloading the entire OS. Additionally, software updates can be 
cached on a local network server running OS X Server so that iOS devices do not need 
to access Apple servers to obtain the necessary update data. 

During an iOS upgrade, iTunes (or the device itself, in the case of OTA software updates) 
connects to the Apple installation authorization server and sends it a list of cryptographic  
measurements for each part of the installation bundle to be installed (for example, LLB, 
iBoot, the kernel, and OS image), a random anti-replay value (nonce), and the device’s 
unique ID (ECID).

The authorization server checks the presented list of measurements against versions 
for which installation is permitted, and if it finds a match, adds the ECID to the mea-
surement and signs the result. The server passes a complete set of signed data to the  
device as part of the upgrade process. Adding the ECID “personalizes” the authorization 
for the requesting device. By authorizing and signing only for known measurements, 
the server ensures that the update takes place exactly as provided by Apple.

The boot-time chain-of-trust evaluation verifies that the signature comes from Apple 
and that the measurement of the item loaded from disk, combined with the device’s 
ECID, matches what was covered by the signature.

These steps ensure that the authorization is for a specific device and that an old iOS 
version from one device can’t be copied to another. The nonce prevents an attacker 
from saving the server’s response and using it to tamper with a device or otherwise 
alter the system software.

Secure Enclave
The Secure Enclave is a coprocessor fabricated in the Apple A7 chip. It utilizes its own 
secure boot and personalized software update separate from the application processor. 
It also provides all cryptographic operations for Data Protection key management and 
maintains the integrity of Data Protection even if the kernel has been compromised.

The Secure Enclave uses encrypted memory and includes a hardware random number 
generator. Communication between the Secure Enclave and the application processor 
is isolated to an interrupt-driven mailbox and shared memory data buffers.
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Each Secure Enclave is provisioned during fabrication with its own UID (Unique ID) 
that is not accessible to other parts of the system and is not known to Apple. When the 
device starts up, an ephemeral key is created, tangled with its UID, and used to encrypt 
the Secure Enclave’s portion of the device’s memory space. 

Additionally, data that is saved to the file system by the Secure Enclave is encrypted 
with a key tangled with the UID and an anti-replay counter. 

The Secure Enclave is responsible for processing fingerprint data from the Touch ID  
sensor, determining if there is a match against registered fingerprints, and then enabling 
access or purchase on behalf of the user. Communication between the A7 and the 
Touch ID sensor takes place over a serial peripheral interface bus. The A7 forwards  
the data to the Secure Enclave but cannot read it. It’s encrypted and authenticated 
with a session key that is negotiated using the device’s shared key that is built into the 
Touch ID sensor and the Secure Enclave. The session key exchange uses AES key wrap-
ping with both sides providing a random key that establishes the session key and uses 
AES-CCM transport encryption.

Touch ID
Touch ID is the fingerprint sensing system built into iPhone 5s, making secure access 
to the device faster and easier. This forward-thinking technology reads fingerprints 
from any angle and learns more about a user’s fingerprint over time, with the sensor 
continuing to expand the fingerprint map as additional overlapping nodes are identi-
fied with each use. 

Touch ID makes using a longer, more complex passcode far more practical because 
users won’t have to enter it as frequently. Touch ID also overcomes the inconvenience 
of a passcode-based lock, not by replacing it but rather by securely providing access  
to the device within thoughtful boundaries and time constraints.

Touch ID and passcodes
To use Touch ID, users must set up iPhone 5s so that it requires a passcode to unlock 
the device. When Touch ID scans and recognizes an enrolled fingerprint, iPhone 5s 
unlocks without asking for the device passcode. The passcode can always be used 
instead of Touch ID, and it’s still required under the following circumstances:

• iPhone 5s has just been turned on or restarted
• iPhone 5s has not been unlocked for more than 48 hours 
• After five unsuccessful attempts to match a finger
• When setting up or enrolling new fingers with Touch ID
• iPhone 5s has received a remote lock command

When Touch ID is enabled, iPhone immediately locks when the Sleep/Wake button  
is pressed. With passcode-only security, many users set an unlocking grace period  
to avoid having to enter a passcode each time the device is used. With Touch ID, 
iPhone 5s locks every time it goes to sleep, and requires a fingerprint—or optionally 
the passcode—at every wake.

Touch ID can be trained to recognize up to five different fingers. With one finger 
enrolled, the chance of a random match with someone else is 1 in 50,000. However, 
Touch ID allows only five unsuccessful fingerprint match attempts before the user  
is required to enter a passcode to obtain access.
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Other uses for Touch ID
Touch ID can also be configured to approve purchases from the iTunes Store, the App 
Store, and the iBooks Store, so users don’t have to enter an Apple ID password. When 
users choose to authorize a purchase, authentication tokens are exchanged between 
the device and store. The token and nonce are held in the Secure Enclave. The nonce  
is signed with a Secure Enclave key shared by all devices and the iTunes Store.

Touch ID authentication and the data associated with the enrolled fingerprints are not 
available to other apps or third parties.

Touch ID security
The fingerprint sensor is active only when the capacitive steel ring that surrounds the 
Home button detects the touch of a finger, which triggers the advanced imaging array 
to scan the finger and send the scan to the Secure Enclave. 

The 88-by-88-pixel, 500-ppi raster scan is temporarily stored in encrypted memory 
within the Secure Enclave while being vectorized for analysis, and then it’s discarded 
after. The analysis utilizes subdermal ridge flow angle mapping, which is a lossy process 
that discards minutia data that would be required to reconstruct the user’s actual finger-
print. The resulting map of nodes never leaves iPhone 5s, is stored without any identity 
information in an encrypted format that can only be read by the Secure Enclave, and is 
never sent to Apple or backed up to iCloud or iTunes.

How Touch ID unlocks iPhone 5s
On devices with an A7 processor, the Secure Enclave holds the cryptographic class keys 
for Data Protection. When a device locks, the keys for Data Protection class Complete 
are discarded, and files and keychain items in that class are inaccessible until the user 
unlocks the device by entering their passcode.

On iPhone 5s with Touch ID turned on, the keys are not discarded when the device 
locks; instead, they’re wrapped with a key that is given to the Touch ID subsystem. 
When a user attempts to unlock the device, if Touch ID recognizes the user’s finger-
print, it provides the key for unwrapping the Data Protection keys and the device is 
unlocked. This process provides additional protection by requiring the Data Protection 
and Touch ID subsystems to cooperate in order to unlock the device.

The decrypted class keys are only held in memory, so they’re lost if the device is 
rebooted. Additionally, as previously described, the Secure Enclave will discard the  
keys after 48 hours or 5 failed Touch ID recognition attempts.
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The secure boot chain, code signing, and runtime process security all help to ensure 
that only trusted code and apps can run on a device. iOS has additional encryption 
and data protection features to safeguard user data, even in cases where other parts 
of the security infrastructure have been compromised (for example, on a device with 
unauthorized modifications). This provides important benefits for both users and IT 
administrators, protecting personal and corporate information at all times and provid-
ing methods for instant and complete remote wipe in the case of device theft or loss.

Hardware Security Features
On mobile devices, speed and power efficiency are critical. Cryptographic operations 
are complex and can introduce performance or battery life problems if not designed 
and implemented with these priorities in mind. 

Every iOS device has a dedicated AES 256 crypto engine built into the DMA path 
between the flash storage and main system memory, making file encryption highly 
efficient. Along with the AES engine, SHA-1 is implemented in hardware, further  
reducing cryptographic operation overhead.

The device’s unique ID (UID) and a device group ID (GID) are AES 256-bit keys fused 
into the application processor during manufacturing. No software or firmware can 
read them directly; they can see only the results of encryption or decryption opera-
tions performed using them. The UID is unique to each device and is not recorded by 
Apple or any of its suppliers. The GID is common to all processors in a class of devices 
(for example, all devices using the Apple A7 chip), and is used as an additional level of 
protection when delivering system software during installation and restore. Integrating 
these keys into the silicon helps prevent them from being tampered with or bypassed, 
or accessed outside the AES engine. 

The UID allows data to be cryptographically tied to a particular device. For example, 
the key hierarchy protecting the file system includes the UID, so if the memory chips 
are physically moved from one device to another, the files are inaccessible. The UID is 
not related to any other identifier on the device.

Apart from the UID and GID, all other cryptographic keys are created by the system’s 
random number generator (RNG) using an algorithm based on CTR_DRBG. System 
entropy is gathered from interrupt timing during boot, and additionally from internal 
sensors once the device has booted.

Securely erasing saved keys is just as important as generating them. It’s especially  
challenging to do so on flash storage, where wear-leveling might mean multiple  
copies of data need to be erased. To address this issue, iOS devices include a feature 
dedicated to secure data erasure called Effaceable Storage. This feature accesses the 
underlying storage technology (for example, NAND) to directly address and erase a 
small number of blocks at a very low level. 

Encryption and Data 
Protection 

Erase all content and settings 
The “Erase all content and settings” option in 
Settings obliterates all the keys in Effaceable 
Storage, rendering all user data on the device 
cryptographically inaccessible. Therefore, it’s 
an ideal way to be sure all personal informa-
tion is removed from a device before giving 
it to somebody else or returning it for service. 
Important: Do not use the “Erase all content 
and settings” option until the device has been 
backed up, as there is no way to recover the 
erased data.
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File Data Protection
In addition to the hardware encryption features built into iOS devices, Apple uses a 
technology called Data Protection to further protect data stored in flash memory on 
the device. Data Protection allows the device to respond to common events such as 
incoming phone calls, but also enables a high level of encryption for sensitive data. 
Mail uses Data Protection by default, and third-party apps installed on iOS 7 or later 
receive this protection automatically. 

Data Protection is implemented by constructing and managing a hierarchy of keys, 
and builds on the hardware encryption technologies built into each iOS device. Data 
Protection is controlled on a per-file basis by assigning each file to a class; accessibility 
is determined by whether the class keys have been unlocked.

Architecture overview
Every time a file on the data partition is created, Data Protection creates a new 256-bit 
key (the “per-file” key) and gives it to the hardware AES engine, which uses the key to 
encrypt the file as it is written to flash memory using AES CBC mode. The initialization 
vector (IV) is the output of a linear feedback shift register (LFSR) calculated with the 
block offset into the file, encrypted with the SHA-1 hash of the per-file key.

The per-file key is wrapped with one of several class keys, depending on the circum-
stances under which the file should be accessible. Like all other wrappings, this is  
performed using NIST AES key wrapping, per RFC 3394. The wrapped per-file key is 
stored in the file’s metadata.

When a file is opened, its metadata is decrypted with the file system key, revealing 
the wrapped per-file key and a notation on which class protects it. The per-file key 
is unwrapped with the class key, then supplied to the hardware AES engine, which 
decrypts the file as it is read from flash memory.

The metadata of all files in the file system is encrypted with a random key, which is 
created when iOS is first installed or when the device is wiped by a user. The file system 
key is stored in Effaceable Storage. Since it’s stored on the device, this key is not used 
to maintain the confidentiality of data; instead, it’s designed to be quickly erased on 
demand (by the user, with the “Erase all content and settings” option, or by a user or 
administrator issuing a remote wipe command from a mobile device management 
server, Exchange ActiveSync, or iCloud). Erasing the key in this manner renders all files 
cryptographically inaccessible.

File Contents
File Metadata

File Key

File System Key

Class Key

Passcode Key

Hardware Key

The content of a file is encrypted with a per-file key, which is wrapped with a class key 
and stored in a file’s metadata, which is in turn encrypted with the file system key. The 
class key is protected with the hardware UID and, for some classes, the user’s passcode. 
This hierarchy provides both flexibility and performance. For example, changing a file’s 
class only requires rewrapping its per-file key, and a change of passcode just rewraps 
the class key.

Creating strong Apple ID passwords
Apple IDs are used to connect to a number  
of services including iCloud, FaceTime, and 
iMessage. To help users create strong pass-
words, all new accounts must contain the  
following password attributes:
• At least eight characters
• At least one letter
• At least one uppercase letter
• At least one number 
• No more than three consecutive  

identical characters
• Not the same as the account name
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Passcodes
By setting up a device passcode, the user automatically enables Data Protection.  
iOS supports four-digit and arbitrary-length alphanumeric passcodes. In addition to 
unlocking the device, a passcode provides the entropy for encryption keys, which are 
not stored on the device. This means an attacker in possession of a device can’t get 
access to data in certain protection classes without the passcode. 

The passcode is “tangled” with the device’s UID, so brute-force attempts must be per- 
formed on the device under attack. A large iteration count is used to make each attempt 
slower. The iteration count is calibrated so that one attempt takes approximately 80 
milliseconds. This means it would take more than 5½ years to try all combinations of a 
six-character alphanumeric passcode with lowercase letters and numbers.

The stronger the user passcode is, the stronger the encryption key becomes. Touch ID 
on iPhone 5s can be used to enhance this equation by enabling the user to establish a 
much stronger passcode than would otherwise be practical. This increases the effective 
amount of entropy protecting the encryption keys used for Data Protection without 
adversely affecting the user experience of unlocking an iOS device multiple times 
throughout the day.

To further discourage brute-force passcode attacks, the iOS interface enforces escalating 
time delays after the entry of an invalid passcode at the Lock screen. Users can choose 
to have the device automatically wiped if the passcode is entered incorrectly after 10 
consecutive attempts. This setting is also available as an administrative policy through 
mobile device management (MDM) and Exchange ActiveSync, and can also be set to a 
lower threshold.

On a device with an A7 processor, the key operations are performed by the Secure 
Enclave, which also enforces a 5-second delay between repeated failed unlocking 
requests. This provides a governor against brute-force attacks in addition to safeguards 
enforced by iOS.

Data Protection Classes
When a new file is created on an iOS device, it’s assigned a class by the app that  
creates it. Each class uses different policies to determine when the data is accessible. 
The basic classes and policies are as follows. 

Complete Protection 
(NSFileProtectionComplete): The class key is protected with a key derived 
from the user passcode and the device UID. Shortly after the user locks a device  
(10 seconds, if the Require Password setting is Immediately), the decrypted class key 
is discarded, rendering all data in this class inaccessible until the user enters the pass-
code again or unlocks the device using Touch ID.

The Mail app implements Complete Protection for messages and attachments. App 
launch images and location data are also stored with Complete Protection.

Protected Unless Open 
(NSFileProtectionCompleteUnlessOpen): Some files may need to be written 
while the device is locked. A good example of this is a mail attachment downloading 
in the background. This behavior is achieved by using asymmetric elliptic curve cryp-
tography (ECDH over Curve25519). Along with the usual per-file key, Data Protection 
generates a file public/private key pair. A shared secret is computed using the file’s 
private key and the Protected Unless Open class public key, whose corresponding 
private key is protected with the user’s passcode and the device UID. The per-file key 

Passcode considerations
If a long password that contains only numbers 
is entered, a numeric keypad is displayed at 
the Lock screen instead of the full keyboard. 
A longer numeric passcode may be easier to 
enter than a shorter alphanumeric passcode, 
while providing similar security.
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is wrapped with the hash of this shared secret and stored in the file’s metadata along 
with the file’s public key; the corresponding private key is then wiped from memory.  
As soon as the file is closed, the per-file key is also wiped from memory. To open the  
file again, the shared secret is re-created using the Protected Unless Open class’s private  
key and the file’s ephemeral public key; its hash is used to unwrap the per-file key, which 
is then used to decrypt the file.

Protected Until First User Authentication 
(NSFileProtectionCompleteUntilFirstUserAuthentication): This 
class behaves in the same way as Complete Protection, except that the decrypted 
class key is not removed from memory when the device is locked. The protection in 
this class has similar properties to desktop full-disk encryption, and protects data from 
attacks that involve a reboot. This is the default class for all third-party app data not 
otherwise assigned to a Data Protection class.

No Protection
(NSFileProtectionNone): This class key is protected only with the UID, and is 
kept in Effaceable Storage. Since all the keys needed to decrypt files in this class are 
stored on the device, the encryption only affords the benefit of fast remote wipe. If a 
file is not assigned a Data Protection class, it is still stored in encrypted form (as is all 
data on an iOS device).

Keychain Data Protection
Many apps need to handle passwords and other short but sensitive bits of data, such 
as keys and login tokens. The iOS keychain provides a secure way to store these items.

The keychain is implemented as a SQLite database stored on the file system. There 
is only one database; the securityd daemon determines which keychain items each 
process or app can access. Keychain access APIs result in calls to the daemon, which 
queries the app’s “keychain-access-groups” and the “application-identifier” entitlement. 
Rather than limiting access to a single process, access groups allow keychain items to 
be shared between apps. 

Keychain items can only be shared between apps from the same developer. This is 
managed by requiring third-party apps to use access groups with a prefix allocated to 
them through the iOS Developer Program. The prefix requirement is enforced through 
code signing and Provisioning Profiles. 

Keychain data is protected using a class structure similar to the one used in file Data 
Protection. These classes have behaviors equivalent to file Data Protection classes, but 
use distinct keys and are part of APIs that are named differently.

Availability File Data Protection Keychain Data Protection

When unlocked NSFileProtectionComplete kSecAttrAccessibleWhenUnlocked

While locked NSFileProtectionCompleteUnlessOpen N/A

After first unlock NSFileProtectionCompleteUntilFirstUserAuthentication kSecAttrAccessibleAfterFirstUnlock

Always NSFileProtectionNone kSecAttrAccessibleAlways

Apps that utilize background refresh services in iOS 7 are required to use  
kSecAttrAccessibleAfterFirstUnlock for keychain items that need to  
be accessed during background updates.

Each keychain class has a “This device only” counterpart, which is always protected 
with the UID when being copied from the device during a backup, rendering it useless 
if restored to a different device.

Components of a keychain item
Along with the access group, each keychain 
item contains administrative metadata (such  
as “created” and “last updated” time stamps).  
It also contains SHA-1 hashes of the attributes 
used to query for the item (such as the  
account and server name) to allow lookup 
without decrypting each item. And finally, it 
contains the encryption data, which includes 
the following:
• Version number
• Value indicating which protection class 

the item is in
• Per-item key wrapped with the protection 

class key
• Dictionary of attributes describing the 

item (as passed to SecItemAdd), encoded  
as a binary plist and encrypted with the  
per-item key

The encryption is AES 128 in GCM (Galois/
Counter Mode); the access group is included  
in the attributes and protected by the GMAC 
tag calculated during encryption.
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Apple has carefully balanced security and usability by choosing keychain classes that 
depend on the type of information being secured and when it’s needed by the OS. 
For example, a VPN certificate must always be available so the device keeps a continu-
ous connection, but it’s classified as “non-migratory,” so it can’t be moved to another 
device. 

For keychain items created by iOS, the following class protections are enforced:

Item Accessible

Wi-Fi passwords After first unlock

Mail accounts After first unlock

Exchange accounts After first unlock

VPN certificates Always, non-migratory

VPN passwords After first unlock

LDAP, CalDAV, CardDAV After first unlock

Social network account tokens After first unlock

Home sharing password When unlocked

Find My iPhone token Always

iTunes backup When unlocked, non-migratory

Voicemail Always

Safari passwords When unlocked

Bluetooth keys Always, non-migratory

Apple Push Notification Service Token Always, non-migratory

iCloud certificates and private key Always, non-migratory

iCloud token After first unlock

iMessage keys Always, non-migratory

Certificates and private keys installed  
by Configuration Profile

Always, non-migratory

SIM PIN Always, non-migratory

Keybags
The keys for both file and keychain Data Protection classes are collected and managed 
in keybags. iOS uses the following four keybags: System, Backup, Escrow, and iCloud 
Backup.

System keybag is where the wrapped class keys used in normal operation of  
the device are stored. For example, when a passcode is entered, the 
NSFileProtectionComplete key is loaded from the system keychain and 
unwrapped. It is a binary plist stored in the No Protection class, but whose contents  
are encrypted with a key held in Effaceable Storage. In order to give forward security 
to keybags, this key is wiped and regenerated each time a user changes a passcode. 
The System keybag is the only keybag stored on the device. The AppleKeyStore 
kernel extension manages the System keybag, and can be queried regarding a device’s 
lock state. It reports that the device is unlocked only if all the class keys in the System 
are accessible, having been unwrapped successfully. 

Backup keybag is created when an encrypted backup is made by iTunes and stored 
on the computer to which the device is backed up. A new keybag is created with 
a new set of keys, and the backed-up data is re-encrypted to these new keys. As 
explained earlier, non-migratory keychain items remain wrapped with the UID-derived 
key, allowing them to be restored to the device they were originally backed up from, 
but rendering them inaccessible on a different device. 
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The keybag is protected with the password set in iTunes, run through 10,000 iterations 
of PBKDF2. Despite this large iteration count, there’s no tie to a specific device, and 
therefore a brute-force attack parallelized across many computers can be attempted  
on the Backup keybag. This threat can be mitigated with a sufficiently strong password. 

If a user chooses to not encrypt an iTunes backup, the backup files are not encrypted 
regardless of their Data Protection class, but the keychain remains protected with a 
UID-derived key. This is why keychain items migrate to a new device only if a backup 
password is set.

Escrow keybag is used for iTunes syncing and MDM. This keybag allows iTunes to  
back up and sync without requiring the user to enter a passcode, and it allows an 
MDM server to remotely clear a user’s passcode. It is stored on the computer that’s 
used to sync with iTunes, or on the MDM server that manages the device.

The Escrow keybag improves the user experience during device synchronization, which 
potentially requires access to all classes of data. When a passcode-locked device is first 
connected to iTunes, the user is prompted to enter a passcode. The device then creates 
an Escrow keybag and passes it to the host. The Escrow keybag contains exactly the 
same class keys used on the device, protected by a newly generated key. This key is 
needed to unlock the Escrow keybag, and is stored on the device in the Protected Until 
First User Authentication class. This is why the device passcode must be entered before 
backing up with iTunes for the first time after a reboot.

iCloud Backup keybag is similar to the Backup keybag. All the class keys in this key-
bag are asymmetric (using Curve25519, like the Protected Unless Open Data Protection 
class), so iCloud backups can be performed in the background. For all Data Protection 
classes except No Protection, the encrypted data is read from the device and sent to 
iCloud. The corresponding class keys are protected by iCloud keys. The keychain class 
keys are wrapped with a UID-derived key in the same way as an unencrypted iTunes 
backup. 

FIPS 140-2
The cryptographic modules in iOS 7 have been validated to comply with U.S. Federal 
Information Processing Standard (FIPS) 140-2 Level 1. This validates the integrity of 
cryptographic operations in Apple apps and third-party apps that properly utilize  
iOS cryptographic services. Bluetooth services have not been validated. For more  
information, see http://support.apple.com/kb/HT5808.

http://support.apple.com/kb/HT5808
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Apps are among the most critical elements of a modern OS security architecture.  
While apps provide amazing productivity benefits for users, they also have the poten-
tial to negatively impact system security, stability, and user data if they’re not handled 
properly. 

Because of this, iOS provides layers of protection to ensure that apps are signed and 
verified, cannot execute malicious code, and are sandboxed to protect user data at all 
times. These elements provide a stable, secure platform for apps, enabling thousands 
of developers to deliver hundreds of thousands of apps on iOS without impacting  
system integrity. And users can access these apps on their iOS devices without undue 
fear of viruses, malware, or unauthorized attacks.

App Code Signing
Once the iOS kernel has started, it controls which user processes and apps can be run. 
To ensure that all apps come from a known and approved source and have not been 
tampered with, iOS requires that all executable code be signed using an Apple-issued 
certificate. Apps provided with the device, like Mail and Safari, are signed by Apple. 
Third-party apps must also be validated and signed using an Apple-issued certificate. 
Mandatory code signing extends the concept of chain of trust from the OS to apps, 
and prevents third-party apps from loading unsigned code resources or using self-
modifying code. 

In order to develop and install apps on iOS devices, developers must register with 
Apple and join the iOS Developer Program. The real-world identity of each developer, 
whether an individual or a business, is verified by Apple before their certificate is 
issued. This certificate enables developers to sign apps and submit them to the App 
Store for distribution. As a result, all apps in the App Store have been submitted by an 
identifiable person or organization, serving as a deterrent to the creation of malicious 
apps. They have also been reviewed by Apple to ensure they operate as described and 
don’t contain obvious bugs or other problems. In addition to the technology already 
discussed, this curation process gives customers confidence in the quality of the apps 
they buy.

Businesses also have the ability to write in-house apps for use within their organization 
and distribute them to their employees. Businesses and organizations can apply to 
the iOS Developer Enterprise Program (iDEP) with a D-U-N-S number. Apple approves 
applicants after verifying their identity and eligibility. Once an organization becomes 
a member of iDEP, it can register to obtain a Provisioning Profile that permits in-house 
apps to run on devices it authorizes. Users must have the Provisioning Profile installed 
in order to run the in-house apps. This ensures that only the organization’s intended 
users are able to load the apps onto their iOS devices. In-house apps also check to 
ensure the signature is valid at runtime. Apps with an expired or revoked certificate 
will not run.

App Security



15White Paper
iOS Security

Unlike other mobile platforms, iOS does not allow users to install potentially malicious 
unsigned apps from websites, or run untrusted code. At runtime, code signature checks 
of all executable memory pages are made as they are loaded to ensure that an app 
has not been modified since it was installed or last updated.

Runtime Process Security
Once an app is verified to be from an approved source, iOS enforces security measures 
designed to prevent it from compromising other apps or the rest of the system. 

All third-party apps are “sandboxed,” so they are restricted from accessing files stored 
by other apps or from making changes to the device. This prevents apps from gathering 
or modifying information stored by other apps. Each app has a unique home directory 
for its files, which is randomly assigned when the app is installed. If a third-party app 
needs to access information other than its own, it does so only by using application 
programming interfaces (APIs) and services provided by iOS.

System files and resources are also shielded from the user’s apps. The majority of iOS 
runs as the non-privileged user “mobile,” as do all third-party apps. The entire OS parti-
tion is mounted as read-only. Unnecessary tools, such as remote login services, aren’t 
included in the system software, and APIs do not allow apps to escalate their own 
privileges to modify other apps or iOS itself.

Access by third-party apps to user information and features such as iCloud is con-
trolled using declared entitlements. Entitlements are key/value pairs that are signed 
in to an app and allow authentication beyond runtime factors like unix user ID. Since 
entitlements are digitally signed, they cannot be changed. Entitlements are used  
extensively by system apps and daemons to perform specific privileged operations 
that would otherwise require the process to run as root. This greatly reduces the 
potential for privilege escalation by a compromised system application or daemon. 

In addition, apps can only perform background processing through system-provided 
APIs. This enables apps to continue to function without degrading performance or  
dramatically impacting battery life. Apps can’t share data directly with each other;  
sharing can be implemented only by both the receiving and sending apps using  
custom URL schemes, or through shared keychain access groups.

Address space layout randomization (ASLR) protects against the exploitation of  
memory corruption bugs. Built-in apps use ASLR to ensure that all memory regions are 
randomized upon launch. Randomly arranging the memory addresses of executable 
code, system libraries, and related programming constructs reduces the likelihood of 
many sophisticated exploits. For example, a return-to-libc attack attempts to trick a 
device into executing malicious code by manipulating memory addresses of the stack 
and system libraries. Randomizing the placement of these makes the attack far more 
difficult to execute, especially across multiple devices. Xcode, the iOS development 
environment, automatically compiles third-party programs with ASLR support turned on. 

Further protection is provided by iOS using ARM’s Execute Never (XN) feature, which 
marks memory pages as non-executable. Memory pages marked as both writable 
and executable can be used only by apps under tightly controlled conditions: The 
kernel checks for the presence of the Apple-only dynamic code-signing entitlement. 
Even then, only a single mmap call can be made to request an executable and writ-
able page, which is given a randomized address. Safari uses this functionality for its 
JavaScript JIT compiler.
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Data Protection in Apps
The iOS Software Development Kit (SDK) offers a full suite of APIs that make it easy for 
third-party and in-house developers to adopt Data Protection and ensure the highest 
level of protection in their apps. Data Protection is available for file and database APIs, 
including NSFileManager, CoreData, NSData, and SQLite.

As of iOS 7, third-party apps that do not opt-in to a specific data protection class 
receive Protected Until First User Authentication by default. For devices that were 
upgraded from an earlier release to iOS 7, apps that were already installed at the time 
of the upgrade continue to use No Protection unless they specifically adopt a specific 
Data Protection class.

Accessories
The Made for iPhone, iPod touch, and iPad (MFi) licensing program provides vetted 
accessory manufacturers access to the iPod Accessories Protocol (IAP) and the neces-
sary supporting hardware components.

When an accessory communicates with an iOS device using a Lightning connector 
cable, or via Wi-Fi or Bluetooth, the device asks the accessory to prove it has been 
authorized by Apple by responding with an Apple-provided certificate, which is  
verified by the device. The device then sends a challenge, which the accessory must 
answer with a signed response. This process is entirely handled by a custom integrated 
circuit that Apple provides to approved accessory manufacturers and is transparent to 
the accessory itself. 

Accessories can request access to different transport methods and functionality; for 
example, access to digital audio streams over the Lightning cable, or Siri hands-free 
mode over Bluetooth. The IC ensures that only approved devices are granted full 
access to the device. If an accessory does not provide authentication, its access is  
limited to analog audio and a small subset of serial (UART) audio playback controls.

AirPlay also utilizes the authentication IC to verify that receivers have been approved 
by Apple. AirPlay audio and video streams utilize the MFi-SAP (Secure Association 
Protocol), which encrypts communication between the accessory and device using 
ECDH key exchange (Curve25519) with 2048-bit RSA keys and AES-128 in CTR mode.
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Network Security

In addition to the built-in safeguards Apple uses to protect data stored on iOS devices, 
there are many network security measures that organizations can take to keep infor-
mation secure as it travels to and from an iOS device.

Mobile users must be able to access corporate networks from anywhere in the world, 
so it’s important to ensure that they are authorized and their data is protected during  
transmission. iOS uses—and provides developer access to—standard networking pro-
tocols for authenticated, authorized, and encrypted communications. To accomplish 
these security objectives, iOS integrates proven technologies and the latest standards 
for both Wi-Fi and cellular data network connections.

On other platforms, firewall software is needed to protect open communication ports 
against intrusion. Because iOS achieves a reduced attack surface by limiting listening 
ports and removing unnecessary network utilities such as telnet, shells, or a web server, 
no additional firewall software is needed on iOS devices.

SSL, TLS
iOS supports Secure Socket Layer (SSL v3) as well as Transport Layer Security (TLS v1.0,  
TLS v1.1, TLS v1.2) and DTLS. Safari, Calendar, Mail, and other Internet applications auto - 
matically use these mechanisms to enable an encrypted communication channel 
between the device and network services. High-level APIs (such as CFNetwork) make  
it easy for developers to adopt TLS in their apps, while low-level APIs (SecureTransport) 
provide fine-grained control.

VPN
Secure network services like virtual private networking typically require minimal setup 
and configuration to work with iOS devices. iOS devices work with VPN servers that 
support the following protocols and authentication methods:

• Juniper Networks, Cisco, Aruba Networks, SonicWALL, Check Point, Palo Alto Networks, 
Open SSL, and F5 Networks SSL-VPN using the appropriate client app from the App 
Store. These apps provide user authentication for the built-in iOS support. 

• Cisco IPSec with user authentication by Password, RSA SecurID or CRYPTOCard, and 
machine authentication by shared secret and certificates. Cisco IPSec supports VPN 
On Demand for domains that are specified during device configuration. 

• L2TP/IPSec with user authentication by MS-CHAPV2 Password, RSA SecurID or 
CRYPTOCard, and machine authentication by shared secret.

• PPTP with user authentication by MS-CHAPV2 Password and RSA SecurID or 
CRYPTOCard. 

iOS supports VPN On Demand for networks that use certificated-based authentication. 
IT policies specify which domains require a VPN connection by using a configuration 
profile. 
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iOS 7 introduces per-app VPN support, facilitating VPN connections on a much more 
granular basis. Mobile device management (MDM) can specify a connection for each 
managed app and/or specific domains in Safari. This helps ensure that secure data 
always goes to and from the corporate network—and that a user’s personal data  
does not.

Wi-Fi 
iOS supports industry-standard Wi-Fi protocols, including WPA2 Enterprise, to provide 
authenticated access to wireless corporate networks. WPA2 Enterprise uses 128-bit AES  
encryption, giving users the highest level of assurance that their data remains protected  
when sending and receiving communications over a Wi-Fi network connection. With 
support for 802.1X, iOS devices can be integrated into a broad range of RADIUS authen-
tication environments. 802.1X wireless authentication methods supported on iPhone 
and iPad include EAP-TLS, EAP-TTLS, EAP-FAST, EAP-SIM, PEAPv0, PEAPv1, and LEAP.

Bluetooth
Bluetooth support in iOS has been designed to provide useful functionality without  
unnecessary increased access to private data. iOS devices support Encryption Mode 3, 
Security Mode 4, and Service Level 1 connections. iOS supports the following 
Bluetooth profiles:

• Hands-Free Profile (HFP 1.5)
• Phone Book Access Profile (PBAP)
• Advanced Audio Distribution Profile (A2DP)
• Audio/Video Remote Control Profile (AVRCP)
• Personal Area Network Profile (PAN)
• Human Interface Device Profile (HID)

Support for these profiles varies by device. For more information, see  
http://support.apple.com/kb/ht3647.

Single Sign-on
iOS supports authentication to enterprise networks through single sign-on (SSO).  
SSO works with Kerberos-based networks to authenticate users to services they are 
authorized to access. SSO can be used for a range of network activities from secure 
Safari session to third-party apps. 

iOS SSO utilizes SPNEGO tokens and the HTTP Negotiate protocol to work with 
Kerberos-based authentication gateways and Windows Integrated Authentication  
systems that support Kerberos tickets. SSO support is based on the open source 
Heimdal project.

The following encryption types are supported:

• AES128-CTS-HMAC-SHA1-96
• AES256-CTS-HMAC-SHA1-96
• DES3-CBC-SHA1
• ARCFOUR-HMAC-MD5

Safari supports SSO, and third-party apps that use standard iOS networking APIs can 
be whitelisted to also use it. To configure SSO, iOS supports a configuration profile  
payload that allows MDM servers to push down the necessary settings. This includes 
setting the user principal name (that is, the Active Directory user account) and Kerberos 
realm settings, as well as configuring which apps and/or Safari web URLs should be 
allowed to use SSO.
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AirDrop Security
iOS devices that support AirDrop use Bluetooth Low-Energy (BTLE) and Apple-created 
peer-to-peer Wi-Fi technology to send files and information to nearby devices. 

When a user enables AirDrop, a 2048-bit RSA identity is stored on the device. 
Additionally, an AirDrop identity hash is created based on the email addresses and 
phone numbers associated with the user’s Apple ID.

When a user chooses AirDrop as the method for sharing an item, the device emits an 
AirDrop signal over BTLE. Other devices that are awake, in close proximity, and have 
AirDrop turned on detect the signal and respond with a shortened version of their 
owner’s identity hash.

AirDrop is set to share with Contacts Only by default. Users can also choose if they 
want to be able to use AirDrop to share with Everyone or turn off the feature entirely. 
In Contacts Only mode, the received identity hashes are compared with hashes of 
people in the initiator’s Contacts. If a match is found, the sending device creates a 
peer-to-peer Wi-Fi network and advertises an AirDrop connection using Bonjour. Using 
this connection, the receiving devices send their full identity hashes to the initiator. If 
the full hash still matches Contacts, the recipient’s first name and photo (if present in 
Contacts) are displayed in the AirDrop sharing sheet.

When using AirDrop, the sending user selects who they want to share with. The send-
ing device initiates an encrypted (TLS) connection with the receiving device, which 
exchanges their iCloud identity certificates. The identity in the certificates is verified 
against each user’s Contacts. Then the receiving user is asked to accept the incoming 
transfer from the identified person or device. If multiple recipients have been selected, 
this process is repeated for each destination. 

In the Everyone mode, the same process is used but if a match in Contacts is not 
found, the receiving devices are shown in the AirDrop sending sheet with a silhouette 
and with the device’s name, as defined in Settings > General > About > Name.

The Wi-Fi radio is used to communicate directly between devices without using any 
Internet connection or Wi-Fi Access Point. 
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Apple has built a robust set of services to help users get even more utility and produc-
tivity out of their devices, including iMessage, FaceTime, Siri, iCloud, iCloud Backup, and 
iCloud Keychain.

These Internet services have been built with the same security goals that iOS promotes 
throughout the platform. These goals include secure handling of data, whether at rest 
on the device or in transit over wireless networks; protection of users’ personal informa-
tion; and threat protection against malicious or unauthorized access to information and 
services. Each service uses its own powerful security architecture without compromising 
the overall ease of use of iOS.

iMessage
Apple iMessage is a messaging service for iOS devices and Mac computers. iMessage  
supports text and attachments such as photos, contacts, and locations. Messages appear 
on all of a user’s registered devices so that a conversation can be continued from any 
of the user’s devices. iMessage makes extensive use of the Apple Push Notification 
Service (APNs). Apple does not log messages or attachments, and their contents are 
protected by end-to-end encryption so no one but the sender and receiver can access 
them. Apple cannot decrypt the data.

When a user turns on iMessage, the device generates two pairs of keys for use with the 
service: an RSA 1280-bit key for encryption and an ECDSA 256-bit key for signing. For 
each key pair, the private keys are saved in the device’s keychain and the public keys 
are sent to Apple’s directory service (IDS), where they are associated with the user’s 
phone number or email address, along with the device’s APNs address. 

As users enable additional devices for use with iMessage, their public keys, APNs 
addresses, and associated phone numbers are added to the directory service. Users  
can also add more email addresses, which will be verified by sending a confirmation 
link. Phone numbers are verified by the carrier network and SIM. Further, all of the 
user’s registered devices display an alert message when a new device, phone number, 
or email address is added.

How iMessage sends and receives messages
Users start a new iMessage conversation by entering an address or name. If they enter 
a phone number or email address, the device contacts the IDS to retrieve the public 
keys and APNs addresses for all of the devices associated with the addressee. If the 
user enters a name, the device first utilizes the user’s Contacts to gather the phone 
numbers and email addresses associated with that name, then gets the public keys 
and APNs addresses from the IDS.

The user’s outgoing message is individually encrypted using AES-128 in CTR mode 
for each of the recipient’s devices, signed using the sender’s private key, and then dis-
patched to the APNs for delivery. Metadata, such as the timestamp and APNs routing 
information, is not encrypted. Communication with APNs is encrypted using TLS.

Internet Services
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If the message text is too long, or if an attachment such as a photo is included, the 
attachment is encrypted using a random key and uploaded to iCloud. The key and  
URI (Uniform Resource Identifier) for the attachment are encrypted and signed, as  
shown below.

User 2

Attachment
encrypted with

random key

Public key 
and APNs token 

for user 2

iCloud

IDS

User 1

Public key 
and APNs token 

for user 1

Signed and encrypted 
message for user 2 with URI and 

key for attachment

APNs

For group conversations, this process is repeated for each recipient and their devices. 

On the receiving side, each device receives its copy of the message from APNs, and,  
if necessary, retrieves the attachment from iCloud. The incoming phone number or 
email address of the sender is matched to the receiver’s Contacts so that a name can 
be displayed, if possible.

As with all push notifications, the message is deleted from APNs when it is delivered. 
Unlike other APNs notifications, however, iMessages are queued for delivery to offline 
devices. Messages are stored for up to seven days. 

FaceTime
FaceTime is Apple’s video and audio calling service. Similar to iMessage, FaceTime calls 
also use the Apple Push Notification Service to establish an initial connection to the 
user’s registered devices. The audio/video contents of FaceTime calls are protected by 
end-to-end encryption, so no one but the sender and receiver can access them. Apple 
cannot decrypt the data.

FaceTime uses Internet Connectivity Establishment (ICE) to establish a peer-to-peer 
connection between devices. Using Session Initiation Protocol (SIP) messages, the 
devices verify their identity certificates and establish a shared secret for each session. 
The nonces supplied by each device are combined to salt keys for each of the media 
channels, which are streamed via Secure Real Time Protocol (SRTP) using AES-256 
encryption.
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Siri
By simply talking naturally, users can enlist Siri to send messages, schedule meetings, 
place phone calls, and more. Siri uses speech recognition, text-to-speech, and a client-
server model to respond to a broad range of requests. The tasks that Siri supports  
have been designed to ensure that only the absolute minimal amount of personal 
information is utilized and that it is fully protected.

When Siri is turned on, the device creates random identifiers for use with the voice 
recognition and Siri servers. These identifiers are used only within Siri and are utilized 
to improve the service. If Siri is subsequently turned off, the device will generate a new 
random identifier to be used if Siri is turned back on.

In order to facilitate Siri’s features, some of the user’s information from the device  
is sent to the server. This includes information about the music library (song titles,  
artists, and playlists), the names of Reminders lists, and names and relationships that 
are defined in Contacts. All communication with the server is over HTTPS.

When a Siri session is initiated, the user’s first and last name (from Contacts), along 
with a rough geographic location, is sent to the server. This is so Siri can respond with 
the name or answer questions that only need an approximate location, such as those 
about the weather. If a more precise location is necessary, perhaps to determine the 
location of nearby movie theaters for example, the server asks the device to provide  
a more exact location. This is an example of how, by default, information is sent to the 
server only when it’s strictly necessary in order to process the user’s request. In any 
event, session information is discarded after 10 minutes of inactivity.

The recording of the user’s spoken words is sent to Apple’s voice recognition server. If 
the task involves dictation only, the recognized text is sent back to the device. Other-
wise, Siri analyzes the text and, if necessary, combines it with information from the 
profile associated with the device. For example, if the request is “send a message to my 
mom,” the relationships and names that were uploaded from Contacts are utilized. The 
command for the identified action is then sent back to the device to be carried out.

Many Siri functions are accomplished by the device, under the direction of the server. 
For example, if the user asks Siri to read an incoming message, the server simply tells 
the device to speak the contents of its unread messages. The contents and sender of 
the message are not sent to the server. 

User voice recordings are saved for a six-month period so that the recognition system 
can utilize them to better understand the user’s voice. After six months, another copy is 
saved, without its identifier, for use by Apple in improving and developing Siri for up to 
two years. Additionally, some recordings that reference music, sports teams and players, 
and businesses or points of interest are similarly saved for purposes of improving Siri.

iCloud
iCloud stores music, photos, apps, calendars, documents, and more, and automatically 
pushes them to all of a user’s devices. iCloud can also be used by third-party apps  
to store and sync documents as well as key values for app data as defined by the 
developer. An iCloud account is configured via the Settings app by the user. iCloud 
features, including Photo Stream, Documents & Data, and Backup, can be disabled by 
IT administrators via a configuration profile.

The service is agnostic about what is being stored and handles all files the same way. 
There are two components for each file. The first is the file’s metadata, which consists 
of its name, extension, and filesystem permission settings. The second component  
is the file’s contents, which are treated by iCloud simply as a collection of bytes.
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Each file is broken into chunks and encrypted by iCloud using AES-128 and a key 
derived from each chunk’s contents that utilizes SHA-256. The keys, and the file’s  
metadata, are stored by Apple in the user’s iCloud account. The encrypted chunks of 
the file are stored, without any user-identifying information, using third-party storage 
services, such as Amazon S3 and Windows Azure.

iCloud Backup
iCloud also backs up information—including device settings, app data, and text and 
MMS messages—daily over Wi-Fi. iCloud secures the content by encrypting it when 
sent over the Internet, storing it in an encrypted format, and using secure tokens  
for authentication. iCloud Backup occurs only when the device is locked, connected  
to a power source, and has Wi-Fi access to the Internet. Because of the encryption  
used in iOS, the system is designed to keep data secure while allowing incremental, 
unattended backup and restoration to occur.

Here’s what iCloud backs up:

• Information about purchased music, movies, TV shows, apps, and books, but not the 
purchased content itself

• Photos and videos in Camera Roll 
• Device settings
• App data
• Home screen and app organization
• iMessage, text (SMS), and MMS messages
• Ringtones
• Visual Voicemail

When files are created in Data Protection classes that are not accessible when the 
device is locked, their per-file keys are encrypted using the class keys from the iCloud 
Backup keybag. Files are backed up to iCloud in their original, encrypted state. Files 
in Data Protection class No Protection are encrypted during transport as described in 
iCloud, above.

The iCloud Backup keybag contains asymmetric (Curve25519) keys for each Data 
Protection class, which are used to encrypt the per-file keys. For more information 
about the contents of the Backup keybag and the iCloud Backup keybag, see “Keychain 
Data Protection” in the Encryption and Data Protection section.

The backup set is stored in the user’s iCloud account and consists of a copy of the 
user’s files, and the iCloud Backup keybag. The iCloud Backup keybag is protected by  
a random key, which is also stored with the backup set. (The user’s iCloud password  
is not utilized for encryption so that changing the iCloud password won’t invalidate 
existing backups.)

While the user’s keychain database is backed up to iCloud, it remains protected by a 
UID-tangled key. This allows the keychain to be restored only to the same device from 
which it originated, and it means no one else, including Apple, can read the user’s 
keychain items.

On restore, the backed-up files, iCloud Backup keybag, and the key for the keybag are 
retrieved from the user’s iCloud account. The iCloud Backup keybag is decrypted using 
its key, then the per-file keys in the keybag are used to decrypt the files in the backup 
set, which are written as new files to the filesystem, thus re-encrypting them as per 
their Data Protection class.

Safari integration with iCloud Keychain
Safari can automatically generate crypto-
graphically strong random strings for website 
passwords, which are stored in Keychain  
and synced to your other devices. Keychain 
items are transferred from device to device, 
traveling through Apple servers, but are 
encrypted in such a way that Apple and  
other devices cannot read their contents.
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iCloud Keychain
iCloud Keychain allows users to securely sync their passwords between iOS devices 
and Mac computers without exposing that information to Apple. In addition to strong 
privacy and security, other goals that heavily influenced the design and architecture 
of iCloud Keychain were ease of use and the ability to recover a keychain. iCloud 
Keychain consists of two services, keychain syncing and keychain recovery.

Apple designed iCloud Keychain and Keychain Recovery so that a user’s passwords are 
still protected under the following conditions:

• A user’s iCloud account is compromised.
• iCloud is compromised by an external attacker or employee.
• Third-party access to user accounts.

Keychain syncing
When a user enables iCloud Keychain for the first time, the device establishes a circle 
of trust and creates a syncing identity for itself. A syncing identity consists of a private 
key and a public key. The public key of the syncing identity is put in the circle, and the 
circle is signed twice: first by the private key of the syncing identity, then again with an 
asymmetric elliptical key (using P256) derived from the user’s iCloud account password. 
Also stored with the circle are the parameters (random salt and iterations) used to  
create the key that is based on the user’s iCloud password.

The signed syncing circle is placed in the user’s iCloud key value storage area. It cannot 
be read without knowing the user’s iCloud password, and cannot be modified without 
having the private key of the syncing identity of its member.

When the user turns on iCloud Keychain on another device, the new device notices in 
iCloud that the user has a previously established syncing circle that it is not a member 
of. The device creates its syncing identity key pair, then creates an application ticket to 
request membership in the circle. The ticket consists of the device’s public key of its 
syncing identity, and the user is asked to authenticate with their iCloud password. The 
elliptical key generation parameters are retrieved from iCloud and generate a key that 
is used to sign the application ticket. Finally, the application ticket is placed in iCloud.

When the first device sees that an application ticket has arrived, it displays a notice 
for the user to acknowledge that a new device is asking to join the syncing circle. The 
user enters their iCloud password, and the application ticket is verified as signed by a 
matching private key. This establishes that the person who generated the request to 
join the circle entered the user’s iCloud password at the time the request was made.

Upon the user’s approval to add the new device to the circle, the first device adds the 
public key of the new member to the syncing circle, signs it again with both its sync-
ing identity and the key derived from the user’s iCloud password. The new syncing 
circle is placed in iCloud, where it is similarly signed by the new member of the circle.

How keychain syncing works
There are now two members of the signing circle, and each member has the public 
key of its peer. They now begin to exchange individual keychain items via iCloud key 
value storage. If both circle members have the same item, the one with the most 
recent modification date will be synced. Items are skipped if the other member has  
the item and the modification dates are identical. Each item that is synced is encrypted 
specifically for the device it is being sent to. It cannot be decrypted by other devices 
or Apple. Additionally, the encrypted item is ephemeral in iCloud; it’s overwritten with 
each new item that’s synced.
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This process is repeated as new devices join the syncing circle. For example, when  
a third device joins, the confirmation appears on both of the other members. The  
user can approve the new member from either of those devices. As new peers are 
added, each peer syncs with the new one to ensure that all members have the same 
keychain items.

However, the entire keychain is not synced. Some items are device-specific, such  
as VPN identities, and shouldn’t leave the device. Only items with the attribute  
kSecAttrSynchronizable are synced. Apple has set this attribute for Safari  
user data (including user names, passwords, and credit card numbers), as well as  
Wi-Fi passwords.

Additionally, by default, keychain items added by third-party apps do not sync. 
Developers must set the kSecAttrSynchronizable when adding items to  
the keychain.

Keychain recovery
Keychain recovery provides a way for users to optionally escrow their keychain with 
Apple, without allowing Apple to read the passwords and other data it contains. Even if 
the user has only a single device, keychain recovery provides a safety net against data 
loss. This is particularly important when Safari is used to generate random, strong pass-
words for web accounts, as the only record of those passwords is in the keychain.

A cornerstone of keychain recovery is secondary authentication and a secure escrow 
service, created by Apple specifically to support this feature. The user’s keychain is 
encrypted using a strong passcode, and the escrow service will provide a copy of the 
keychain only if a strict set of conditions are met.

When iCloud Keychain is turned on, the user is asked to create an iCloud Security 
Code. This code is required to recover an escrowed keychain. By default, the user is 
asked to provide a simple four-digit value for the security code. However, users can 
also specify their own, longer code, or let their devices create a cryptographically  
random code that they can record and keep on their own.

Next, the iOS device exports a copy of the user’s keychain, encrypts it with a random 
key, and places it in the user’s iCloud key value storage area. The random key used to 
encrypt the keychain is wrapped with the user’s iCloud Security Code and the public 
key of the HSM (hardware security module) cluster that will store the escrow record. 
This becomes the user’s iCloud Escrow Record.

If the user decided to accept a cryptographically random security code, instead of 
specifying their own or using a four-digit value, no escrow record is necessary. Instead, 
the iCloud Security Code is used to wrap the random key directly. 

In addition to establishing a security code, users must register a phone number. This is 
used to provide a secondary level of authentication during keychain recovery. The user 
will receive an SMS that must be replied to in order for the recovery to proceed.

Escrow security
iCloud provides a secure infrastructure for keychain escrow that ensures only autho-
rized users and devices can perform a recovery. Topographically positioned behind 
iCloud are clusters of hardware security modules (HSM). These clusters guard the escrow 
records. Each has a key that is used to encrypt the escrow records under their watch, 
as described previously.

To recover a keychain, the user must authenticate with their iCloud account and pass- 
word and respond to an SMS sent to their registered phone number. Once this is done, 
the user must enter their iCloud Security Code. The HSM cluster verifies that the user 
knows their iCloud Security Code using Secure Remote Password protocol (SRP); the 
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code itself is not sent to Apple. Each member of the cluster independently verifies  
that the user has not exceeded the maximum number of attempts that are allowed  
to retrieve their record, as discussed below. If a majority agree, the cluster unwraps the 
escrow record and sends it to the user’s device.

Next, the device uses the iCloud Security Code to unwrap the random key used to 
encrypt the user’s keychain. With that key, the keychain—retrieved from iCloud key 
value storage—is decrypted and restored onto the device. Only 10 attempts to authen-
ticate and retrieve an escrow record are allowed. After several failed attempts, the 
record is locked and the user must call Apple Support to be granted more attempts. 
After the 10th failed attempt, the HSM cluster destroys the escrow record and the 
keychain is lost forever. This provides protection against a brute-force attempt to 
retrieve the record, at the expense of sacrificing the keychain data in response.

These policies are coded in the HSM firmware. The administrative access cards that 
permit the firmware to be changed have been destroyed. Any attempt to alter the 
firmware or access the private key will cause the HSM cluster to delete the private key. 
Should this occur, the owners of all keychains protected by the cluster will receive a 
message informing them that their escrow record has been lost. They can then choose 
to re-enroll.
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iOS supports flexible security policies and configurations that are easy to enforce and 
manage. This enables organizations to protect corporate information and ensure that 
employees meet enterprise requirements, even if they are using devices they’ve pro-
vided themselves—for example, as part of a “bring your own device” (BYOD) program.

Organizations can use resources such as passcode protection, configuration profiles, 
remote wipe, and third-party MDM solutions to manage fleets of devices and help 
keep corporate data secure, even when employees access this data on their personal 
iOS devices. 

Passcode Protection
In addition to providing the cryptographic protection discussed earlier, passcodes  
prevent unauthorized access to the device’s UI. The iOS interface enforces escalating  
time delays after the entry of an invalid passcode, dramatically reducing the effective-
ness of brute-force attacks via the Lock screen. Users can choose to have the device 
automatically wiped if the passcode is entered incorrectly after 10 consecutive attempts. 
This setting is available as an administrative policy and can also be set to a lower 
threshold through MDM and Exchange ActiveSync. 

By default, the user’s passcode can be defined as a four-digit PIN. Users can specify 
a longer, alphanumeric passcode by turning on Settings > General > Passcode > 
Complex Passcode. Longer and more complex passcodes are harder to guess or attack, 
and are recommended for enterprise use.

Administrators can enforce complex passcode requirements and other policies using 
MDM or Exchange ActiveSync, or by requiring users to manually install configuration 
profiles. The following passcode policies are available:

• Allow simple value
• Require alphanumeric value
• Minimum passcode length
• Minimum number of complex characters
• Maximum passcode age
• Passcode history
• Auto-lock timeout
• Grace period for device lock
• Maximum number of failed attempts
• Allow Touch ID

For details about each policy, see the Configuration Profile Key Reference  
documentation at https://developer.apple.com/library/ios/featuredarticles/ 
iPhoneConfigurationProfileRef/.

Device Controls

https://developer.apple.com/library/ios/featuredarticles/ iPhoneConfigurationProfileRef/
https://developer.apple.com/library/ios/featuredarticles/ iPhoneConfigurationProfileRef/
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Configuration Enforcement
A configuration profile is an XML file that allows an administrator to distribute configu-
ration information to iOS devices. Settings that are defined by an installed configuration 
profile can’t be changed by the user. If the user deletes a configuration profile, all the 
settings defined by the profile are also removed. In this manner, administrators can 
enforce settings by tying policies to access. For example, a configuration profile that 
provides an email configuration can also specify a device passcode policy. Users won’t 
be able to access mail unless their passcodes meet the administrator’s requirements.

An iOS configuration profile contains a number of settings that can be specified:

• Passcode policies
• Restrictions on device features (disabling the camera, for example)
• Wi-Fi settings
• VPN settings
• Email server settings
• Exchange settings
• LDAP directory service settings
• CalDAV calendar service settings
• Web clips
• Credentials and keys
• Advanced cellular network settings

Configuration profiles can be signed and encrypted to validate their origin, ensure 
their integrity, and protect their contents. Configuration profiles are encrypted using 
CMS (RFC 3852), supporting 3DES and AES-128.

Configuration profiles can also be locked to a device to completely prevent their 
removal, or to allow removal only with a passcode. Since many enterprise users own 
their iOS devices, configuration profiles that bind a device to an MDM server can be 
removed—but doing so will also remove all managed configuration information, data, 
and apps.

Users can install configuration profiles directly on their devices using Apple Configurator, 
or they can be downloaded via email or over the air using an MDM server.

Mobile Device Management (MDM)
iOS support for MDM allows businesses to securely configure and manage scaled 
iPhone and iPad deployments across their organizations. MDM capabilities are built  
on existing iOS technologies such as configuration profiles, over-the-air enrollment, 
and the Apple Push Notification Service. Using MDM, IT departments can enroll iOS 
devices in an enterprise environment, wirelessly configure and update settings,  
monitor compliance with corporate policies, and even remotely wipe or lock managed 
devices. For more information on mobile device management, visit www.apple.com/
iphone/business/it/management.html.

Apple Configurator
In addition to MDM, Apple Configurator for OS X makes it easy for anyone to deploy 
iOS devices. Apple Configurator can be used to quickly configure large numbers of 
devices with the settings, apps, and data. Devices that are initially configured using 
Apple Configurator can be “supervised,” enabling additional settings and restrictions to 
be installed. Once a device is supervised with Apple Configurator, all available settings 
and restrictions can be installed over the air via MDM as well. For more information on 
configuring and managing devices using both Apple Configurator and MDM, refer to 
Deploying iPhone and iPad: Apple Configurator.

http://www.apple.com/iphone/business/it/management.html
http://www.apple.com/iphone/business/it/management.html
http://help.apple.com/configurator/mac
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Device Restrictions
Administrators can restrict device features by installing a configuration profile.  
The following restrictions are available:

• Allow app installs
• Allow use of camera
• Allow FaceTime
• Allow screen capture
• Allow voice dialing
• Allow automatic sync while roaming
• Allow in-app purchases
• Allow syncing of Mail recents
• Force user to enter store password for all purchases
• Allow multiplayer gaming
• Allow adding Game Center friends
• Allow Siri
• Allow Siri while device is locked
• Allow use of YouTube
• Allow Passbook notifications while device is locked
• Allow use of iTunes Store
• Allow use of Safari
• Enable Safari autofill
• Force Fraudulent Website Warning
• Enable JavaScript
• Block pop-ups
• Accept cookies
• Allow iCloud backup
• Allow iCloud document and key-value sync
• Allow Photo Streams
• Allow Shared Photo Streams
• Allow diagnostics to be sent to Apple
• Allow user to accept untrusted TLS certificates
• Force encrypted backups
• Restrict media by content rating
• Allow Touch ID
• Allow Control Center access from Lock screen
• Allow Today view from Lock screen

Supervised Only Restrictions
• Allow iMessage
• Allow Game Center
• Allow iBooks Store
• Allow erotica from iBooks Store 
• Allow removal of apps 
• Enable Siri Profanity Filter 
• Allow manual install of configuration profiles
• Allow installation of configuration profiles
• Global network proxy for HTTP
• Allow pairing to computers for content sync
• Restrict AirPlay connections with whitelist and optional connection passcodes
• Allow AirDrop
• Allow account modification
• Allow Cellular Data modification
• Allow Find My Friends
• Allow Host Pairing (iTunes)
• Allow Activation Lock
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Remote Wipe 
iOS devices can be erased remotely by an administrator or user. Instant remote wiping 
is achieved by securely discarding the block storage encryption key from Effaceable 
Storage, rendering all data unreadable. Remote wiping can be initiated by MDM, 
Exchange, or iCloud. 

When remote wiping is triggered by MDM or iCloud, the device sends an acknowledg-
ment and performs the wipe. For remote wiping via Exchange, the device checks in 
with the Exchange Server before performing the wipe.

Users can also wipe devices in their possession using the Settings app. And as men-
tioned, devices can be set to automatically wipe after a series of failed passcode 
attempts.
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Conclusion

A Commitment to Security
From hardware to encryption to device access, each component of the iOS security 
platform provides organizations with the resources they need to build enterprise-grade 
security solutions. Together, these components give iOS its industry-leading security 
features without making the device difficult to use.

Apple uses a consistent, integrated security infrastructure throughout iOS and the iOS 
apps ecosystem. Hardware-based storage encryption provides instant remote wipe 
capabilities when a device is lost, and enables users to completely remove all corpo-
rate and personal information when a device is sold or transferred to another owner. 
Diagnostic information is also collected anonymously.

iOS apps designed by Apple are built with enhanced security in mind. Safari offers safe 
browsing with support for Online Certificate Status Protocol (OCSP), EV certificates, 
and certificate verification warnings. Mail leverages certificates for authenticated and 
encrypted email by supporting S/MIME. iMessage and FaceTime also provide client-to-
client encryption.

For third-party apps, the combination of required code signing, sandboxing, and enti-
tlements gives users solid protection against viruses, malware, and other exploits that 
compromise the security of other platforms. The App Store submission process works 
to further shield users from these risks by reviewing every iOS app before it’s made 
available for sale.

To make the most of the extensive security features built into iOS, businesses are 
encouraged to review their IT and security policies to ensure that they are taking full 
advantage of the layers of security technology offered by this platform. 

Apple maintains a dedicated security team to support all Apple products. The team 
provides security auditing and testing for products under development, as well as 
for released products. The Apple team also provides security tools and training, and 
actively monitors for reports of new security issues and threats. Apple is a member 
of the Forum of Incident Response and Security Teams (FIRST). To learn more about 
reporting issues to Apple and subscribing to security notifications, go to apple.com/
support/security.

Apple is committed to incorporating proven encryption methods and creating modern 
mobile-centric privacy and security technologies to ensure that iOS devices can be 
used with confidence in any personal or corporate environment.
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Glossary

Address space layout  
randomization (ASLR)

A technique employed by iOS to make the successful exploitation of a software bug 
much more difficult. By ensuring memory addresses and offsets are unpredictable, 
exploit code can’t hard code these values. In iOS 5 and later, the position of all system 
apps and libraries are randomized, along with all third-party apps compiled as position-
independent executables.

Apple Push Notification 
Service (APNs)

A worldwide service provided by Apple that delivers push notifications to iOS devices.

Boot ROM The very first code executed by a device’s processor when it first boots. As an integral 
part of the processor, it can’t be altered by either Apple or an attacker. 

Data Protection File and keychain protection mechanism for iOS. It can also refer to the APIs that apps 
use to protect files and keychain items.

Device Firmware Upgrade 
(DFU)

A mode in which a device’s Boot ROM code waits to be recovered over USB. The screen 
is black when in DFU mode, but upon connecting to a computer running iTunes, the 
following prompt is presented: “iTunes has detected an iPad in recovery mode. You 
must restore this iPad before it can be used with iTunes.” 

ECID A 64-bit identifier that’s unique to the processor in each iOS device. Used as part of the 
personalization process, it’s not considered a secret.

Effaceable Storage A dedicated area of NAND storage, used to store cryptographic keys, that can be 
addressed directly and wiped securely. While it doesn’t provide protection if an attacker 
has physical possession of a device, keys held in Effaceable Storage can be used as part 
of a key hierarchy to facilitate fast wipe and forward security.

File system key The key that encrypts each file’s metadata, including its class key. This is kept in 
Effaceable Storage to facilitate fast wipe, rather than confidentiality.

Group ID (GID) Like the UID but common to every processor in a class.

Hardware security module 
(HSM)

A specialized tamper-resistant computer that safeguards and manages digital keys. 

iBoot Code that’s loaded by LLB, and in turn loads XNU, as part of the secure boot chain. 

Identity Service (IDS) Apple’s directory of iMessage public keys, APNs addresses, and phone numbers and 
email addresses that are used to look up the keys and device addresses.

Integrated circuit (IC) Also known as a microchip.
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Keybag A data structure used to store a collection of class keys. Each type (System, Backup, 
Escrow, or iCloud Backup) has the same format:
• A header containing:

– Version (set to 3 in iOS 5)
– Type (System, Backup, Escrow, or iCloud Backup)
– Keybag UUID
– An HMAC if the keybag is signed
– The method used for wrapping the class keys: tangling with the UID or PBKDF2, 

along with the salt and iteration count
• A list of class keys:

– Key UUID
– Class (which file or keychain Data Protection class this is)
– Wrapping type (UID-derived key only; UID-derived key and passcode-derived key)
– Wrapped class key
– Public key for asymmetric classes

Keychain The infrastructure and a set of APIs used by iOS and third-party apps to store and 
retrieve passwords, keys, and other sensitive credentials.

Key wrapping Encrypting one key with another. iOS uses NIST AES key wrapping, as per RFC 3394.

Low-Level Bootloader (LLB) Code that’s invoked by the Boot ROM, and in turn loads iBoot, as part of the secure 
boot chain.

Per-file key The AES 256-bit key used to encrypt a file on the file system. The per-file key is 
wrapped by a class key and is stored in the file’s metadata.

Provisioning Profile A plist signed by Apple that contains a set of entities and entitlements allowing apps 
to be installed and tested on an iOS device. A development Provisioning Profile lists 
the devices that a developer has chosen for ad hoc distribution, and a distribution 
Provisioning Profile contains the app ID of an enterprise-developed app.

Ridge flow angle mapping A mathematical representation of the direction and width of the ridges extracted  
from a portion of a fingerprint.

System on a chip (SoC) An integrated circuit (IC) that incorporates multiple components into a single chip.  
The Secure Enclave is an SoC within Apple’s A7 central processor.

Tangling The process by which a user’s passcode is turned into a cryptographic key and 
strengthened with the device’s UID. This ensures that a brute-force attack must be  
performed on a given device, and thus is rate limited and cannot be performed in  
parallel. The tangling algorithm is PBKDF2, which uses AES as the pseudorandom  
function (PRF) with a UID-derived key.

Uniform Resource Identifier 
(URI)

A string of characters that identifies a web-based resource.

Unique ID (UID) A 256-bit AES key that’s burned into each processor at manufacture. It cannot be read 
by firmware or software, and is used only by the processor’s hardware AES engine. 
To obtain the actual key, an attacker would have to mount a highly sophisticated 
and expensive physical attack against the processor’s silicon. The UID is not related 
to any other identifier on the device including, but not limited to, the UDID.

XNU The kernel at the heart of the iOS and OS X operating systems. It’s assumed to be 
trusted, and enforces security measures such as code signing, sandboxing, entitlement 
checking, and ASLR.

© 2014 Apple Inc. All rights reserved. Apple, the Apple logo, AirDrop, AirPlay, Bonjour, FaceTime, iBooks, iMessage, iPad, iPhone, iPod, 
iPod touch, iTunes, Keychain, Mac, OS X, Passbook, Safari, Siri, and Xcode are trademarks of Apple Inc., registered in the U.S. and 
other countries. Touch ID is a trademark of Apple Inc. iCloud and iTunes Store are service marks of Apple Inc., registered in the U.S. 
and other countries. App Store and iBooks Store are service marks of Apple Inc. The Bluetooth® word mark and logos are registered 
trademarks owned by Bluetooth SIG, Inc. and any use of such marks by Apple is under license. Java is a registered trademark of 
Oracle and/or its affiliates. Other product and company names mentioned herein may be trademarks of their respective companies. 
Product specifications are subject to change without notice.     February 2014


